45 research outputs found

    Time-optimal Hamiltonian simulation and gate synthesis using homogeneous local unitaries

    Get PDF
    Motivated by experimental limitations commonly met in the design of solid state quantum computers, we study the problems of non-local Hamiltonian simulation and non-local gate synthesis when only homogeneous local unitaries are performed in order to tailor the available interaction. Homogeneous (i.e. identical for all subsystems) local manipulation implies a more refined classification of interaction Hamiltonians than the inhomogeneous case, as well as the loss of universality in Hamiltonian simulation. For the case of symmetric two-qubit interactions, we provide time-optimal protocols for both Hamiltonian simulation and gate synthesis.Comment: 7 page

    Full security of quantum key distribution from no-signaling constraints

    Full text link
    We analyze a cryptographic protocol for generating a distributed secret key from correlations that violate a Bell inequality by a sufficient amount, and prove its security against eavesdroppers, constrained only by the assumption that any information accessible to them must be compatible with the non-signaling principle. The claim holds with respect to the state-of-the-art security definition used in cryptography, known as universally-composable security. The non-signaling assumption only refers to the statistics of measurement outcomes depending on the choices of measurements; hence security is independent of the internal workings of the devices --- they do not even need to follow the laws of quantum theory. This is relevant for practice as a correct and complete modeling of realistic devices is generally impossible. The techniques developed are general and can be applied to other Bell inequality-based protocols. In particular, we provide a scheme for estimating Bell-inequality violations when the samples are not independent and identically distributed.Comment: 15 pages, 2 figur

    Multipartite Bound Information exists and can be activated

    Full text link
    We prove the conjectured existence of Bound Information, a classical analog of bound entanglement, in the multipartite scenario. We give examples of tripartite probability distributions from which it is impossible to extract any kind of secret key, even in the asymptotic regime, although they cannot be created by local operations and public communication. Moreover, we show that bound information can be activated: three honest parties can distill a common secret key from different distributions having bound information. Our results demonstrate that quantum information theory can provide useful insight for solving open problems in classical information theory.Comment: four page

    General properties of Nonsignaling Theories

    Full text link
    This article identifies a series of properties common to all theories that do not allow for superluminal signaling and predict the violation of Bell inequalities. Intrinsic randomness, uncertainty due to the incompatibility of two observables, monogamy of correlations, impossibility of perfect cloning, privacy of correlations, bounds in the shareability of some states; all these phenomena are solely a consequence of the no-signaling principle and nonlocality. In particular, it is shown that for any distribution, the properties of (i) nonlocal, (ii) no arbitrarily shareable and (iii) positive secrecy content are equivalent.Comment: 10 page

    Bipartite entangled stabilizer mutually unbiased bases as maximum cliques of Cayley graphs

    Full text link
    We examine the existence and structure of particular sets of mutually unbiased bases (MUBs) in bipartite qudit systems. In contrast to well-known power-of-prime MUB constructions, we restrict ourselves to using maximally entangled stabilizer states as MUB vectors. Consequently, these bipartite entangled stabilizer MUBs (BES MUBs) provide no local information, but are sufficient and minimal for decomposing a wide variety of interesting operators including (mixtures of) Jamiolkowski states, entanglement witnesses and more. The problem of finding such BES MUBs can be mapped, in a natural way, to that of finding maximum cliques in a family of Cayley graphs. Some relationships with known power-of-prime MUB constructions are discussed, and observables for BES MUBs are given explicitly in terms of Pauli operators.Comment: 8 pages, 1 figur

    Secrecy content of two-qubit states

    Get PDF
    We analyze the set of two-qubit states from which a secret key can be extracted by single-copy measurements plus classical processing of the outcomes. We introduce a key distillation protocol and give the corresponding necessary and sufficient condition for positive key extraction. Our results imply that the critical error rate derived by Chau, Phys. Rev. A {\bf 66}, 060302 (2002), for a secure key distribution using the six-state scheme is tight. Remarkably, an optimal eavesdropping attack against this protocol does not require any coherent quantum operation.Comment: 5 pages, RevTe

    Multiple copy 2-state discrimination with individual measurements

    Full text link
    We address the problem of non-orthogonal two-state discrimination when multiple copies of the unknown state are available. We give the optimal strategy when only fixed individual measurements are allowed and show that its error probability saturates the collective (lower) bound asymptotically. We also give the optimal strategy when adaptivity of individual von Neumann measurements is allowed (which requires classical communication), and show that the corresponding error probability is exactly equal to the collective one for any number of copies. We show that this strategy can be regarded as Bayesian updating.Comment: 5 pages, RevTe

    Entanglement Capacity of Nonlocal Hamiltonians : A Geometric Approach

    Full text link
    We develop a geometric approach to quantify the capability of creating entanglement for a general physical interaction acting on two qubits. We use the entanglement measure proposed by us for NN-qubit pure states (PRA \textbf{77}, 062334 (2008)). Our procedure reproduces the earlier results (PRL \textbf{87}, 137901 (2001)). The geometric method has the distinct advantage that it gives an experimental way to monitor the process of optimizing entanglement production.Comment: 8 pages, 1 figure
    corecore